USS Black Hawk-A Specifications
USS Black Hawk-A | |
Class Information | |
Role: |
Explorer |
Decks: |
24 |
Cruising Speed: |
Warp 8 |
Personnel | |
Total Compliment: |
780 |
Tactical Systems | |
Energy Weapons: |
9x Type-XII Phaser Arrays |
Torpedo Launchers: |
|
Shields: | |
Template:Shipclass |
These are the technical specifications for the Century-Class USS Black Hawk-A.
Contents
Design Overview
The Century-Class starship is the culmination of decades of research and starship design. With the launch of the Excalibur-Class, Starfleet Command believed they had found a replacement to the highly successful Galaxy-Class. However, the Excalibur proved to be so resource intensive that Starfleet ended up devoting the resources to simply build more of the more aged Galaxy's. The Century was believed to be the much more compact, automated answer to the resource intensive Excalibur in the same fashion that the Intrepid-Class was to the Galaxy.
The Century Development Project was to be capable of virtually any mission and to become notable vessels of exploration, representing the Federation in matters of diplomacy, as well as defending it in situations of combat. With the ever present dangers facing the Federation new defensive technologies were designed to along with the ships hull. One of the key components of its design was the high level of automation employed throughout the ship, requiring half the crew complement of the Sovereign-Class starship for a ship nearly the same size. The Century-class design pushed the envelope as far as possible when it came to computer power, shields, armament, and systems capabilities.
The Century Project began its development shortly after the development of the Intrepid-class platform was in its first year of service. With the overly ambitious and resource intensive Excalibur-class intended as a limited replacement for the Galaxy-class, it was realized that this was an unsustainable future for Starfleet's exploration. Much like the Intrepid design complemented the Galaxy design, Starfleet Command sought to find a complement to the Excalibur. Originally the Insignia-Class was thought to be a possible suitor, however it's true multi-purpose role put it nearly in a class of it's own. Moreover, it also required an intensive amount of manned resources for a ship of it's size due to the very nature of its purpose.
During the opening months of the Dominion War, a design had been proposed and submitted to Starfleet. However, with the conflict with the Dominion in full swing, Starfleet opted for the more combat oriented designs such as the Defiant, Sovereign and Akira Classes. Starfleet decided to postpone the development of the design to possibly revisit at the conclusion of the war.
Following the war, with the push towards Starfleet's roots of exploration, the Century-class design began construction in mid-2377 with the keel laid down at Utopia Planitia Fleet Yards. Included in the ships systems were the most modern of all technologies, many of which it shared with the Insignia class, including the second generation of bio-neural circuitry, holographic projectors throughout the entirety of the ship, Ablative Armor, a more powerful warp drive, highly advanced automation systems for many of the ships systems which required less crew to control them, and an equally advanced vocal command interface which would allow a single person to command the ship if necessary. Construction of the vessel was slow and steady allowing room for trial and error to install and properly configure all the automated systems. Since no Starfleet vessel beforehand was geared towards such high automation, and many of the ships vital systems were tied into this method, precision was necessary to ensure the ship functioned without a critical error after launch.
What would have been a standard production time line for a prototype of the Century’s nature was significantly extended, due to needing to test and re-test these systems before being brought fully online. In late 2378, the ship’s computer came online, and in a matter of months had become self aware. With the assistance of the automation protocols in place, the rest of the construction and outfitting continued unabated. The high level of automation cut an estimated six months off the outfitting and construction process.
In mid-2379, the class’ namesake and prototype had finished construction and outfitting. The plaque was put in the place of honor, and a crew was selected for the shakedown cruise. With such lofty goals as had been put in place for this new class, the criterion for the cruise were extensive. In addition, the Admiralty wanted to ensure beyond a shadow of a doubt that the automation systems installed wouldn’t cause a cascade system wide failure.
The Century performed admirably, and exceeded all of the Admiralty’s expectations, though the full shakedown of the prototype took the better part of two years. In 2382, the USS Century was officially commissioned, and another Century class vessel, the USS Constitution, was put into production. Eventually by 2385, Starfleet Command was satisfied with the overall performance, automation and computer systems of their two Century-class vessels and ordered a batch of six starships to begin production in 2386 with others to follow.
General Information and Layout
Crew Breakdown
- For a complete description of the departments and the positions therein, please review the Departmental Breakdown.
The Black Hawk currently holds 780 crew and 20 civilian passengers.
- Officers: 195
- Enlisted: 585
- Civilians: 20
- Emergency Capacity: 1,600 souls
Departmental Breakdown
OFFICERS | ENLISTED | TOTAL | |
COMMAND | 16 | 40 | 56 |
OPERATIONS | 27 | 90 | 117 |
ENGINEERING | 35 | 116 | 151 |
SECURITY/TACTICAL | 14 | 86 | 100 |
MEDICAL | 32 | 48 | 80 |
SCIENCE | 36 | 115 | 151 |
FLIGHT SQUADRON | 35 | 90 | 125 |
Measurements
- Length: 715 meters
- Beam: 282 meters
- Height: 90 meters
- Mass: 9,500,000 metric tons
- Number of Decks: 24
Propulsion Systems
Warp Drive
Designed specifically for the Century-class starship, the General Electric Class 8B M/ARA drive and power system was an upgrade to the systems first developed first for Starfleet in use by the Sovereign Class. Compared to other starships of similar size and mass, the Class 8B would at first appear to be quite over-powered for the Century, but this is not so.
A breakthrough design came about with the advent of the Class 7 warp reactor during the Defiant Class Project, which makes use of four-lobed magnetic constriction segment columns that allow for additional reactant streams to surround the primary stream that travels down the center of the magnetic constrictor columns. Advances in pressure vessel construction and compact reactor injector nozzles made the Class 8 reactor, and subsequently Class 8B, a reality, with a six-lobed design that allowed for a total of seven reactant streams of both matter and antimatter to collide in the dilithium articulation chamber, resulting in the most powerful starship-grade reactor output to date. The matter/antimatter reactor assembly spans 12 decks with the dilithium chamber and plasma transfer conduits located on the second level of Main Engineering, well above the main floor.
Another large advancement utilized in the development of the warp propulsion system was the utilization of a rotatable dilithium articulation chamber within the warp core, where the matter and antimatter reactants are combined to create the high-energy warp plasma needed to power the engine nacelles, as well as shipboard systems through the use of EPS power taps. Computer-controlled rotation of the frame allows for manipulation of the manner in which the reactants meet, allowing for further control of the warp plasma into a "cleaner" power source. Redesigned verterium cortenide components within each pair of warp field coils is then able to use the warp plasma to generate a more energy-efficient subspace field with less particle waste products and stresses that were found in older propulsion systems to damage subspace. After the fleet-wide installation of this new variable warp geometry system, Starfleet was able to remove the so-called "Warp Speed Limit" of Warp 5, established in 2370 after the discovery of pollution by Dr. Serova in the Hekaras Corridor. Pursuant to Starfleet Command Directive 12856.A, all starships traveling within Federation space are required to receive engine upgrades that prevent the further pollution of subspace by 2380.
Impulse Drive
When the Black Hawk is not at warp speed, it relies upon impulse engines for secondary propulsion. Impulse is a sub-warp speed used primarily within star systems or other areas where warp speed is not necessary. Century-class starships are equipped with three (3) standard impulse engines developed by HighMPact Propulsion. A single, large engine is located on the ship's spine above the saucer, and two smaller units are inserted inside the warp pylons. Each impulse engine is powered by a series of fusion reactors, with 7 in all. Each reactor is fueled by deuterium slush.
The Black Hawk's impulse engines are comparable, but slightly more advanced, to the Sovereign-class. The size and power of the engines allows the Black Hawk to be extremely maneuverable at impulse speeds, allowing it greater combat efficiency.
RCS Thrusters
These small thrusters are positioned around the external hull of the Black Hawk such as the rim of the saucer section and the end of the warp engines. There are 16 thrusters in all. The Reaction Control System (RCS) is used for maneuvering at speeds below impulse. They are used in conjunction to propel the ship by venting pressurized gasses. RCS thrusters are usually employed for docking procedures and maneuvering within starbase facilities and the like. Each thruster additionally is fitting with mooring beam emitters that allow for greater efficiency when docking with other ships or stations and can help hold the ship in place.
Tactical Systems
Defensive Systems
A symmetrical subspace graviton field. This type of shield is fairly similar to those of most other Starships. However, besides incorporating the now mandatory nutation shift in frequency, the shields alter their graviton polarity to better deal with more powerful weapons, such as the neutron-carbide beams of Tamarian vessels. During combat, the shield sends data on what type of weapon is being used on it, and what frequency and phase the weapon uses. Once this is analyzed by the tactical officer, the shield can be configured to have the same frequency as the incoming weapon - but different nutation. This tactic dramatically increases shield efficiency.
There are sixteen shield grids on the Akira-class, and each one generates 186 MW, resulting in a total shield strength of 2976 MW. However, during normal combat operations, only 10 of the 16 shield generators are activated, with the remaining 6 generators serving as the emergency shield system. This means that, in normal combat operations, the Akira-class has a rated shield strength of 1860MW. The power for the shields is taken directly from the warp engines and impulse fusion generators. If desired, the shields can be augmented by power from the impulse power plants. The shields can protect against approximately 36% of the total EM spectrum (whereas the standard Galaxy-class starship's shields can only protect against about 23%), made possible by the multi-phase graviton polarity flux technology incorporated into the shields.
Offensive Systems
Phasers
Two dorsal phaser arrays on the primary hull, extending from just aft of the bridge to almost midway around the saucer section. The arrays converge to intersect at the bow of the ship, giving them an almost oval appearance. Two ventral phaser arrays on the primary hull, extending from the very back of the primary hull almost to the bow. These arrays also converge gradually as they approach the widest part of the primary hull, converging near the bow. Two phaser arrays are located on or near the aft sail covering the rear firing arc.
The Akira-class utilizes the Type X array system. The seven arrays are all type X, the new standard emitter. Each array fires a steady beam of phaser energy, and the forced-focus emitters discharge the phasers at speeds approaching .986c (which works out to about 182,520 miles per second - nearly warp one). The phaser array automatically rotates phaser frequency and attempts to lock onto the frequency and phase of a threat vehicle's shields for shield penetration.
Each phaser array takes its energy directly from the impulse drive and auxiliary fusion generators. Individually, each Type X emitter can only discharge approximately 5.1 MW (megawatts). However, several emitters (usually two) fire at once in the array during standard firing procedures, resulting in a discharge approximately 10.2 MW.
Torpedoes
Three fixed-focus torpedo launchers, one located just above the main deflector dish and another at the bow of the primary hull along with a third launcher within the main sail. These launchers are the second generation of automated, high-speed launchers originally developed and found on the Photon torpedo casing (typical) New Orleans- and Saber-class (and later seen aboard Excelsior-class Starships as part of their refit schedule) starships and each launcher is armed with 5 tubes per launcher, giving the Akira-class the ability to launch up to fifteen torpedoes in a single salvo. The third generation of this launcher has seen deployment aboard the Sovereign-class and Norway-class.
Mark XXV Photon Torpedoes, capable of pattern firing (sierra, etc.) as well as independent launch. Independent targeting once launched from the ship, detonation on contact unless otherwise directed by the Chief Tactical Officer.
The Black Hawk also carries 225 Quantum Torpedoes and 15 Tri-Cobalt Torpedoes.
Sensor Systems
Long range and navigation sensors are located behind the main deflector dish, to avoid sensor "ghosts" and other detrimental effects consistent with main deflector dish millicochrane static field output. Lateral sensor pallets are located around the rim of the entire starship, providing full coverage in all standard scientific fields, but with emphasis in the following areas:
- Astronomical phenomena
- Planetary analysis
- Remote life-form analysis
- EM scanning
- Passive neutrino scanning
- Parametric subspace field stress (a scan to search for cloaked ships)
- Thermal variances
- Quasi-stellar material
Each sensor pallet (twenty-four in all) can be interchanged and re-calibrated with any other pallet on the ship. Warp Current sensor: This is an independent subspace graviton field-current scanner, allowing the Akira-class to track ships at high warp by locking onto the eddy currents from the threat ship's warp field, then follow the currents by using multi-model image mapping.
A standard Akira-class main deflector dish is located along the ventral portion of the Akira-class's primary hull, and is located just forward of the primary engineering spaces. Composed of molybdenum/duranium mesh panels over a tritanium framework (beneath the Duranium-Tritanium hull), the dish can be manually moved twelve degrees in any direction off the ship's Z-axis. The main deflector dish's shield and sensor power comes from two graviton polarity generators located on deck 17, each capable of generating 128 MW, which can be fed into two 550 millicochrane subspace field distortion generators.
Long- and Short-Range Sensors
There are twenty-eight independent tactical sensors on the Akira-class. Each sensor automatically tracks and locks onto incoming hostile vessels and reports bearing, aspect, distance, and vulnerability percentage to the tactical station on the main bridge. Each tactical sensor is approximately 84% efficient against ECM, and can operate fairly well in particle flux nebulae (which has been hitherto impossible).
A probe is a device that contains a number of general purpose or mission specific sensors and can be launched from a starship for closer examination of objects in space.
There are nine different classes of probes, which vary in sensor types, power, and performance ratings. The spacecraft frame of a probe consists of molded duranium-tritanium and pressure-bonded lufium boronate, with sensor windows of triple layered transparent aluminum. With a warhead attached, a probe becomes a photon torpedo. The standard equipment of all nine types of probes are instruments to detect and analyze all normal EM and subspace bands, organic and inorganic chemical compounds, atmospheric constituents, and mechanical force properties. All nine types are capable of surviving a powered atmospheric entry, but only three are specially designed for aerial maneuvering and soft landing. These ones can also be used for spatial burying. Many probes can be real-time controlled and piloted from a starship to investigate an environment dangerous hostile or otherwise inaccessible for an away-team.
Primary Systems
Computer Systems
The primary computer core occupies space on decks 7, 8 and 9 far astern. The secondary, emergency core is much smaller than the first and is located adjacent to Environmental Control on Deck 16.
The updated Computer cores found on the Akira-class are newer versions of the Galaxy-class Isolinear Processing cores. The system is powered by a smaller, regulated EPS conduit directly from the warp core. Cooling of the isolinear loop is accomplished by a regenerative liquid nitrogen loop, which has been refit to allow a delayed-venting heat storage unit for "Silent Running." For missions, requirements on the computer core rarely exceed 45-50% of total core processing and storage capacity. The rest of the core is utilized for various scientific, tactical, or intelligence gathering missions - or to backup data in the event of a damaged core.
Computer access throughout the ship is accomplished via a complex network. The primary method of data transfer is through the Optical Data Network (ODN). The ODN connects subprocessor systems to the computer core through a hierarchical structure. ODN lines are capable of an amazing rate of transfer speed, at 6200 kiloquads/second.
Library Computer Access and Retrieval System (LCARS) is the common user interface of 24th century computer systems, based on verbal and graphically enhanced keyboard/display input and output. The graphical interface adapts to the task which is supposed to be performed, allowing for maximum ease-of-use. The Akira-class operates on LCARS build version 5.2 to account for increases in processor speed and power, and limitations discovered in the field in earlier versions, and increased security. This system is run on all stations, consoles, displays, and support tools. Support tools can include a variety of different equipment, such as desktop terminals, which are placed in every office and crew quarter aboard the ship. Another popular method of portable computer access is the Personal Access Display Device (PADD). These handheld devices have direct access to the computer systems and can provide the user with portable access. PADDs have their own power and storage matrix as well, allowing them to be transported easily between different ships or facilities.
All Starfleet vessels make use of a computer program called a Universal Translator that is employed for communication among persons who speak different languages. It performs a pattern analysis of an unknown language based on a variety of criteria to create a translation matrix. The translator is built in the Starfleet badge and small receivers are implanted in the ear canal.
The Universal Translator matrix aboard an Akira-class starships typically consists of well over 100,000 languages and increases with every new encounter.
Environmental Systems
One of the most important systems on the Black Hawk, or any starship for that matter, is the extensive network of environmental systems. Making sure that these systems operate and perform as designed is one of the top priorities. The main environmental system is comprised of many separate systems. These systems include replication, air, gravity, recycling, water, and waste extraction. All environmental systems have multiple redundant back-ups throughout the ship, including emergency back-up power supplies.
One of the most important systems is the air supply system. This system constantly monitors the air supply aboard the ship, filtering out any unnecessary or unwanted particles. The air is constantly recycled to provide a clean Class-M environment. In certain areas of the ship, such as crew and guest quarters, the air supply can be adjusted to provide atmosphere to species other than Class M such as Class K, L, and N. Key areas of the ship such as the bridge and main engineering have back-up emergency life support systems adjacent to them in the event of systems failure. In addition, there are several designated life support shelters throughout the ship.
Gravity is provided throughout the ship by a series of gravity generators. There are a total of 220 generators in all. Gravity is accomplished by graviton particles that are emitted from each generator. This effect is similar to that of a tractor beam. Each gravity generator has a limited range; thus, each field overlaps to ensure stable gravity.
Another primary system aboard starships is replication systems. Based off of the basic principle of transporter technology, replicators are the primary source of food distribution throughout the ship. Crew lounges, personal quarters, and offices are all equipped with replicator units. A replicator?s primary source of matter is a form of raw stock material, which can be reorganized at the molecular level into any desired form. In addition to conduits that carry replicator material, there are also a series of conduits that transport water throughout the ship. All crew quarters are equipped with sinks and water closets for personal hygiene. Much like air systems, water is also recycled. Waste is extracted and can either be ejected into space, or re-replicated and broken down into raw material.
Transportation Systems
The most common method of quick and easy transportation among Federation starships is accomplished via the transporters. The Black Hawk is equipped with standard transporter systems, as relatively few advancements have been made in the past few years. The Black Hawk has 4 primary transporter rooms located throughout the ship. Supplementing the primary ones are 4 emergency transporters capable of "beam-out" only. There are also 4 industrial cargo transporters used for transporting cargo and other large objects. The maximum range of the transporter systems is 40,000 kilometers.
The Black Hawk is capable of matching transporter beam frequency in conjunction with its shield frequency, allowing it to beam through shields that are currently active, an achievement that was once unable to be accomplished. In addition, the targeting scanners have been upgraded to allow for greater accuracy.
Communications Systems
- Intraship Transmissions: Voice and Data
- Personal Communicator Range: 800 km
- Ship to Ground Range: 20,000 - 60,000 km
- Communications Speed: 20.5 kiloquads/second
- Subspace Speed: 9.9997 warp
Communications systems aboard the USS Black Hawk are typical divided into three key areas; intraship communications, ship-to-ship, and ship-to-ground. Communications is an important system that allows not only the crew of the Black Hawk to stay in contact with one another, but also allowing for contact with Starfleet Command.
Intraship Communications can be accomplished either by voice or data. Both methods are directed and managed by the main computer. A large co-processor located in the secondary and primary cores receives, analyzes, and redistributes information at rapid speed, allowing for almost near-instant communication. The communications processors are connected to a series of 3,200 terminal node devices located throughout the ship.
Ship-to-ship communications involves the transmission of data between to or more starships or starbase-like facilities. Transmissions are sent via several long-range subspace transceivers located along the hull. Typical data transmissions of this type include general communication, messages, sensor logs, and tactical information. The subspace transceivers are also capable of receiving communications by utilizing their subspace antennas.
Ship-to-ground communications are accomplished much like the Ship-to-ship communications are. However, they make use of the short-range subspace transceivers. Short-range transceiver's range is generally between 20,000 and 60,000 kilometers. Ships generally don't orbit below 20,000 km. Thanks to recent advances in transceiver technology, the limits of transmissions have been extended. Should a ship need to contact a planet from over a distance of 60,000 km, the long-range transceivers would be used much like how ship-to-ship communications are carried out. Ship-to-ground communications are typical used for contacting planets in which the ship is in orbit of. It is also frequently used to monitor and stay in contact with any away teams that may be down on the planet.
Communications between two or more crewmembers, whether they are both on the ship, or both on the planet are handled by devices called communicators (or sometimes comm badges). These small devices shaped as the Starfleet logo are worn by Starfleet personnel at all times. Each communicator contains a small power supply and transceiver/receiver technology. The device is activated by simply tapping it and then communicating with another individual by voice. Communicators are the most often used way for personnel to stay in contact with each other. They are also useful during away missions because transporters can get an easy lock on them, should they need to beamed back aboard the ship.
Security personnel can monitor any communication sent to and from the Black Hawk. The exception to this is any transmission that has been encoded using advanced sets of Starfleet encryption protocols. Typically, messages of important nature from Starfleet Command are for the captain?s eyes only.
Support Craft
Shuttlecraft
- USS Mississippi, Danube-Class Runabout
- USS Tigris, Danube-Class Runabout -- Destroyed
- 6x Type-18 Shuttlepod
- Edison | Telsa | Graham Bell | Franklin | Adams | Farnsworth
- 2x Type-7 Shuttlecraft
- 2x Type-8 Shuttlecraft
- 1x Type-11 Shuttlecraft
- 8x Type-M1 Sphinx Workpod
Fighter Craft
Lifeboats
- 100x Lifeboats
Credits
The above information was adapted from the A Call To Duty Website on the Akira-Class starship.
USS BLACK HAWK-A (CENTURY-CLASS) • IN SERVICE 2388-2390 | |
SHIPS TO BEAR THE NAME | USS Black Hawk • USS Black Hawk-A • USS Black Hawk-B • Sim History |
IMPORTANT ERRATA | About the Black Hawk • Ship Specifications • Deck Listing • Duty Roster • Departments • Cabin Assignments |
ATTACHED SUPPORT CRAFT | Fighters: 21x Gryphon Runabouts: USS Zambezi • USS Citarum Type-11 Shuttle: Spiner • Doohan Type-8 Shuttle: Nimoy • Frakes • Visitor Type-6 Shuttle: Shatner • Stewart • Brooks Type-15 Shuttlepod: Edison • Telsa • Graham Bell • Franklin • Adams • Farnsworth • Curie • Turing Other: 6x Workbee |